An RNA vaccine based on recombinant Semliki Forest virus particles expressing the Cu,Zn superoxide dismutase protein of Brucella abortus induces protective immunity in BALB/c mice.
نویسندگان
چکیده
We constructed infectious but replication-deficient Semliki Forest virus (SFV) particles carrying recombinant RNA encoding Brucella abortus Cu,Zn superoxide dismutase (SOD). The recombinant SFV particles (SFV-SOD particles) were then evaluated for their ability to induce a T-cell immune response and to protect BALB/c mice against a challenge with B. abortus 2308. Intraperitoneal injection of mice with recombinant SFV-SOD particles did not lead to the induction of SOD-specific antibodies, at least until week 6 after immunization (the end of the experiment). In vitro stimulation of splenocytes from the vaccinated mice with either recombinant Cu,Zn SOD (rSOD) or crude Brucella protein resulted in a T-cell proliferative response and the induction of gamma interferon secretion but not interleukin-4. In addition, the splenocytes exhibited significant levels of cytotoxic T-lymphocyte activity against Brucella-infected cells. The SFV-SOD particles, but not the control virus particles, induced a significant level of protection in BALB/c mice against challenge with B. abortus virulent strain 2308. These findings indicated that an SFV-based vector carrying the SOD gene has potential for use as a vaccine to induce resistance against B. abortus infections.
منابع مشابه
Immunity in BALB/c Mice Induces Protective Brucella abortus the Cu,Zn Superoxide Dismutase Protein of Semliki Forest Virus Particles Expressing An RNA Vaccine Based on Recombinant
متن کامل
Intraspleen delivery of a DNA vaccine coding for superoxide dismutase (SOD) of Brucella abortus induces SOD-specific CD4+ and CD8+ T cells.
In the development of vaccines capable of providing immunity against brucellosis, Cu-Zn superoxide dismutase (SOD) has been demonstrated to be one of the protective immunogens of Brucella abortus. In an earlier study, we provided strong evidence that intramuscular injection with a plasmid DNA carrying the SOD gene (pcDNA-SOD) was able to induce a protective immune response. The present study wa...
متن کاملRecombinant Ochrobactrum anthropi expressing Brucella abortus Cu,Zn superoxide dismutase protects mice against B. abortus infection only after switching of immune responses to Th1 type.
The members of the genus Brucella are gram-negative, facultatively intracellular bacterial pathogens that cause brucellosis in many animal species and humans. Although live, attenuated vaccines are available to protect several animal species from the disease, there is no safe and effective vaccine for human use. Here we report that a bacterium that is closely related to Brucella species, Ochrob...
متن کاملUse of S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol as an adjuvant improved protective immunity associated with a DNA vaccine encoding Cu,Zn superoxide dismutase of Brucella abortus in mice.
This study was conducted to evaluate the immunogenicity and protective efficacy of a DNA vaccine encoding Brucella abortus Cu,Zn superoxide dismutase (SOD) using the Toll-like receptor 2/6 agonist S-[2,3-bispalmitoyiloxy-(2R)-propyl]-R-cysteinyl-amido-monomethoxy polyethylene glycol (BPPcysMPEG) as an adjuvant. Intranasal coadministration of BPPcysMPEG with a plasmid carrying the SOD-encoding g...
متن کاملOverexpression of protective antigen as a novel approach to enhance vaccine efficacy of Brucella abortus strain RB51.
Brucella abortus strain RB51 is an attenuated rough strain that is currently being used as the official live vaccine for bovine brucellosis in the United States and several other countries. We reasoned that overexpression of a protective antigen(s) of B. abortus in strain RB51 should enhance its vaccine efficacy. To test this hypothesis, we overexpressed Cu/Zn superoxide dismutase (SOD) protein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 73 6 شماره
صفحات -
تاریخ انتشار 2005